Skip to main content

Dr. Sudeep Bhattacharyay, Ph.D. (he/him/his)

Sudeep Bhattacharyay
  • Professor
  • Chemistry and Biochemistry
  • Blugold Supercomputing Cluster

Teaching Interests
  • General Chemistry: CHEM 103, CHEM 104
  • Physical Chemistry: CHEM 433, CHEM 434, CHEM 406
  • Analytical Chemistry: CHEM 213

One of my main interests is to foster active learning through discovery-guided projects. In the past few semesters, classroom research projects have been designed and introduced in biophysical and physical chemistry courses, mostly with senior students. These projects are computational and are being carried out using either a remote server or the in-house Blugold Super-Computing Cluster.

Research and Creative Activities
  • Computational and theoretical chemistry to probe the chemistry of enzymes
  • Redox Chemistry
  • Protein Dynamics

We use theory, concepts of physical chemistry, and advanced computer simulation methods to explore these questions. In addition, we also collaborate with experimentalists to validate the theoretical findings.

  • Ph.D. Indian Association for the Cultivation of Science, Jadavpur, India (Chemistry)
  • M.S. Indian Institute of Technology, Kharagpur, India (Chemistry)
  • B.S. Indian Institute of Technology, Kharagpur, India (Chemistry)
Published Research

Selected Publications

  1. Cyclic Changes in Active Site Polarization and Dynamics Drive the 'Ping-pong' Kinetics in NRH:Quinone Oxidoreductase 2: An Insight from QM/MM Simulations Reinhardt, C. R.*, Hu, Q. H.*, Bresnahan, C. G.*, Hati, S., Bhattacharyya, S. ACS Catal. 2018, 12, 12015-12029. (doi:10.1021/acscatal.8b04193). 
  2. Integrating Research into the Curriculum: A Low-Cost Strategy for Promoting Undergraduate Research. Hati, S. and Bhattacharyya, S. in ACS Symposium Series "Best Practices for Supporting and Expanding Undergraduate Research in Chemistry" Eds. Gourley, B. L. and Jones, R. M. 2018, 119-141 (doi:10.1021/bk-2018-1275.ch008). 
  3. Insight into the Kinetics and Thermodynamics of the Hydride Transfer Reactions between Quinones and Lumiflavin: A Density Functional Theory Study Reinhardt, C. R.*, Jaglinski, T. C.*, Kastenschmidt, A. M.*, Song, E. H.*, Krause, A. J.*, Gollmar, J. M.*, Meise, K. J.*, Stenerson, Z. S.*, Weibel, T. J.*, Dison, A.*, Finnegan, M. R.*, Griesi, D. S.*, Gross, A. K.*, Heltne, M. D.*, Hughes, T. G.*, Hunt, C. D.*, Jansen, K. A.*, Xiong, A. H.*, Hati, S., and Bhattacharyya, S. J. Mol. Model. 2016, 22, 199 (doi: 10.1007/s00894-016-3074-1).
  4. Incorporating Modeling and Simulations in Undergraduate Biophysical Chemistry Course to Promote Understanding of Structure-Dynamics-Function Relationships in Proteins Hati, S. and Bhattacharyya, S. Biochem. Mol. Biol. Ed. 2016, 44, 140-159 (doi:10.1002/bmb.20942).
  5. Effect of Stacking Interactions on the Thermodynamics and Kinetics of Lumiflavin: A Study with Improved Density Functionals and Density Functional Tight-Binding Protocol Bresnahan, C. G.*, Reinhardt, C. R.*, Bartholow, T. *, Rumpel, J. P.*, North, M. A.*, and Bhattacharyya, S.J. Phys. Chem. A2015, 119, 172–182. (doi:10.1021/jp510020v).
  6. Probing the Global and Local Dynamics of Aminoacyl-tRNA Synthetases using All atom and Coarse-grained Simulations Strom, A.,* Fehling, S.*, Bhattacharyya, S., Hati, S.J. Mol. Mod.2014,20, 2245 (doi:10.1007/s00894-014-2245-1).
  7. Comparison of the Intrinsic Dynamics of Aminoacyl-tRNA Synthetases *Warren, N.*,  Strom, A.*, Nicolet, B.*, Albin, K.*, Albrecht, J.,* Bausch, B.* Dobbe, M.*, Dudek, M.*, Firgens, S.*, Fritsche, C.*, Gunderson, A.*, Heimann, J.*, Her, C.*, Hurt, J. * Konorev, D.*, Lively, M.*, Meacham, S.*, Rodriguez, V*, Tadayon, S.*, Trcka, D.*, Yang, Y.*, Bhattacharyya, S., and Hati, S. The Protein Journal2014,33,184-98. (doi:10.1007/s10930-014-9548-z).
  8. Strictly Conserved Lysine of Prolyl-tRNA Synthetase Editing Domain Facilitates Binding and Positioning of Misacylated tRNAPro Bartholow, T. G.,* Sanford, B. L., Cao, B.V.,* Schmidt, H. L., Johnson, J. M., Meitzner, J. Bhattacharyya, S., Musier-Forsyth, K. M., Hati, S. Biochemistry 2014, 53, 1059-68:doi:10.1021/bi401279r.
  9. Multiple pathways promote dynamical coupling between catalytic domains in escherichia coli prolyl-tRNA synthetase, Johnson, J. M., Sanford, B. L., Strom, A. S,* Tadayon, S.,* Brent, L., Zirbes, A., Bhattacharyya, S., Musier-Forsyth, K. M., Hati, S. Biochemistry2013,52, 4399-4412.
  10. Role of coupled-dynamics in the catalytic activity of prokaryotic-like prolyl-tRNA synthetases Sanford, B.L., Cao, B.V.,* Johnson, J., Zimmerman, C., Strom, A. S.,* Mueller, R. M.,* Bhattacharyya, S., Musier-Forsyth, K. M., Hati, S.Biochemistry2012,51,2146-2156.
  11. Interplay of flavin's redox states and protein dynamics: an insight from QM/MM simulations of dihydronicotinamide ribosidequinone oxidoreductase 2Mueller, R. M.,* North, M. A.,*Yang, C.,*Hati, S., Bhattacharyya, S.J. Phys. Chem.2011,115, 3632-3641.
  12. Improved density functional description of the electrochemistry and structure-property descriptors of substituted flavins North, M. A.,*Bhattacharyya, S., and Truhlar, D. G.J. Phys. Chem.2010,114, 14907–14915.
  13. Theoretical determination of the redox potentials of NRH:quinone oxidoreductase 2 using quantum mechanical/molecular mechanical simulations Rauschnot, J. C. Jr.,*Yang, C.,*Yang, V.,*and Bhattacharyya, S.J. Phys. Chem.2009,113,8149-8157.
  14. Evolutionary basis for the coupled-domain motions inThermus thermophilus leucyl-tRNA synthetase Weimer, K. M. E.,* Shane, B. L., Brunetto, M., Bhattacharyya, S. and Hati, S.J. Biol. Chem.2009,284, 10088-99.