Members of the Joint Committee on Finance:

I’m writing to convey my firm belief that the University of Wisconsin-Eau Claire’s 2019-21 budget priorities are an excellent use of state resources, and will have positive impacts well beyond our campus. In particular, I’m excited by our new health sciences programs supported by the UW System operating budget, and our new Science and Health Sciences building project in the UW System capital budget.

First, the UW System’s operating budget would allow us to build on our areas of strength in the health sciences to meet the needs of our state, while also investing in our talented employees. Already the home to Wisconsin’s only nursing program west of Madison, our university is also a highly-ranked provider of pre-professional health, STEM, and health sciences programs. I’m proud our campus has more than 725 students study pre-professional health programs, including pre-medical, pre-veterinary, and pre-pharmacy sciences, and that figure doesn’t even include our nursing students. I urge you to support our new programs in Bioinformatics and Biomedical Engineering, as well as funding to bring a Bachelor of Science in Nursing completion program to UW-Eau Claire Barron County. Additionally, I appreciate past pay plans the Joint Finance Committee has approved and the proposed pay plan for this biennium, which will help us keep wages competitive with peer institutions to which we may lose talented faculty and staff.

Second, funding for our new Science and Health Sciences Building to replace Phillips Science Hall is necessary for the ongoing stability of our campus, as well as our service to northwest Wisconsin. Phillips Hall was constructed in phases beginning in 1961, with its first phase opening in 1963. As a result of its phased construction, which finished in 1968, Phillips Hall descended rapidly into obsolescence and remains our most expensive, least efficient academic building to operate. In fact, Phillips Hall accounts for 34% of all work orders submitted for our academic buildings. The building’s low five-load capacity and ineffective air handling system—Phillips has 26 air handlers, but you may experience wildly-varying temperatures as you move throughout the facility—are infrastructural deficits that cannot be remedied by renovation. Additionally, Phillips has 1,300 original single pane windows and 43 exterior doors, which both contribute to the building’s excessive operating costs. On average, it costs $534,000 per year to provide for utilities and maintenance in Phillips Hall, $227,000 of which goes toward attempting to heat and cool the building. By comparison, Centennial Hall, our only new academic building since the early 1980s, is of comparable assignable square footage to Phillips Hall and costs $228,000 annually for all utilities and maintenance.

Despite its inefficiency and ill-suited design for modern scientific education, research, and application, an average of 5,600 unduplicated students take classes originating in Phillips each year. As a regional comprehensive university, this building is our only science facility. We’ve gotten our money’s worth out of Phillips Hall, but ensuring the ongoing stability of UW-Eau Claire’s educational enterprise necessitates timely reinvestment in this campus.

Excellence. Our measure, our motto, our goal.

Office of the Chancellor • Schofield 204 • 715-836-2327 • fax: 715-836-2902
In addition to my own written testimony, I'm submitting a set of other documents for inclusion in the official record. First, I asked my department chairs in Phillips Hall to provide information about how their students have been impacted by that facility's inability to accommodate modern scientific research and education. I hope you'll find their testimony to the building's current conditions, and their departments' accomplishments despite the building's shortcomings, useful as the budget process moves forward. Second, I've attached a letter I received from Mayo Clinic Health System leaders reaffirming their commitment to the new Science and Health Sciences building. Together, we're prepared to combine the resources of our two institutions to tackle some of the most pressing problems facing rural healthcare practitioners. This partnership builds on our strong history of undergraduate research by putting Blugolds in the same labs as Mayo Clinic Health System's top doctors, nurses, researchers, and staff.

UW-Eau Claire is poised to address shortages in nursing, pre-med students from rural areas, and health sciences researchers, all of whom can contribute to innovation and talent development in healthcare fields, with specific attention paid to rural medicine. I remain committed to seeing these projects through, and am happy to provide any additional feedback or information you may need.

Respectfully submitted,

James C. Schmidt
Chancellor
April 12, 2019

Dear Members of the Joint Finance Committee,

As a faculty member for 20 years at UWEC, I have spent a lot of time teaching in Phillips Science Hall. The building built in the 1960’s is limiting our ability to prepare students for the STEM workforce for the 2020s and beyond. The building was not designed for modern science and engineering teaching methods for “doing science” such as hybrid lecture/lab rooms or space for student faculty research or space for engineering capstone projects.

We know that students learn best by doing. Hybrid lecture/lab courses allow students to learn through hands-on experiences and large group discussions all in the same room. It allows faculty to convey academic content efficiently and students to explore and collaborate in the same setting. Phillips Hall was designed to have separate lecture rooms and lab rooms, which greatly limits these newer pedagogical practices.

One of the hallmarks of UWEC is its student-faculty research. These high impact practices lead to outside the classroom experiences allow students to work independently with faculty guidance. These experiences uniquely prepare students for the workforce or graduate school. These research projects require space. In Materials Science and Engineering we currently need to limit the number of research projects and students due to space limitations in Phillips Hall. I work with several students each year on student-faculty research collaborations. I have no designated space for these projects. My students use a teaching lab during the summer and ad-hoc space during the school year. I am expanding into a new area of research and need space to build an impact testing device. Parts have been purchased, but there is no space available in Phillips Hall to assemble it into a working instrument.

The Materials Science and Engineering Center (MSEC) was started in 2004 with a mission of outreach to industry, outreach to K-12 and support of faculty-student research collaborations. The Center’s interdisciplinary nature allowed the central management of instrumentation used by multiple departments. As the instrument holdings has grown through federally funded grants and other funding sources, the Center has reached a point where any new instrument requires the removal of a current instrument. For example we have two microscopes that total over $300k in the room the size of a closet. These instruments are used for teaching, so some of the students have to stand in the hallway during training. A few years ago 3M donated a Scanning Electron Microscope to the Center. In order to house the donated instrument we had to remove another fully functional Scanning Electron Microscope. That instrument that could have continued to serve both teaching and research needs, had to be decommissioned. On other occasions we have had to pass on industry donated instruments due to a lack of space.

To address regional workforce needs a Materials Science academic program started in 2007 and a Materials Science and Engineering program started a few years ago. These additional programs have been shoe-horned into an already crowded building. Small classrooms have been converted to lab space that is used for classes and ad-hoc for student-faculty research projects. As these programs grow there will be a need for more space. For engineering programs, capstone projects are an essential part of the curriculum. Capstone projects are either individual or small group projects often working in collaboration with an industrial partner. Currently, students don’t have a space to set up their experiments or to work on the projects without having to take it back down at the end of the work time, because the same space has to be used for other purposes.

Excellence. Our measure, our motto, our goal.

Materials Science & Engineering Center • 715-836-5504 • fax: 715-836-3556 • email: MatSci@uwec.edu
Due to its age, Phillips Hall also has its not so welcome visitors: bats and mice. I have personally escorted a mouse from my office to the outside. One teaching moment I recall well, involved another unwelcome visitor. I was in a 2nd floor lab, in the front of the room introducing the lab exercise we were doing that morning. There were 24 students in the room. As I was talking, I noticed students in the front left of the room start to move back a bit, and one female student screamed. I look over to the left and noticed a bat was flopping along the floor coming towards me. There was a coffee can with electrical wires in it on the table in front of me. I dumped the wires, walked over put the can over the bat and kept talking about the lab exercise. The students in the back of the room never even knew what happened. As the students began the lab exercise, I went and let our resident bat remover (a faculty member in Physics) know to come and remove the bat from the room.

As workforce and educational needs change and as the university better connects with local industry and the community, the facilities that support those efforts also need to change. Phillips Hall has served students, faculty, the university, and the community well, but is no longer adequate to prepare students for the future STEM workforce needs of the region and state.

Sincerely,

Doug Dunham
Director, Materials Science and Engineering Center
Members of the Joint Committee on Finance:

Thank you for your service to the State of Wisconsin.

As you know, a new science building has been proposed at the University of Wisconsin-Eau Claire. I am Chair of the Dept. of Geology at UWEC, and I look forward to the expanded opportunities a new building would bring to students.

The current Phillips Science Hall is an exciting place filled with amazing scientific instrumentation. This instrumentation is used in laboratories for classes. It is also used to conduct world-class student-faculty research with our undergraduate students—an important part of their educational experience. UWEC is designated the Center of Excellence for Undergraduate Collaborative Research in the University of Wisconsin System, and I do not know of any public institution in the nation where students conduct such high-quality research at a large scale.

Scientific instrumentation requires climate controls and space to ensure the equipment operates properly. If specific climatic conditions are not maintained, the equipment may require expensive repairs (or the instrument might be ruined entirely).

One summer day I received a call to report to a room housing our inductively coupled plasma mass spectrometer (ICP-MS). This instrument is used to conduct water-quality research in western Wisconsin. The ICP-MS, purchased for more than $500,000, is extremely sensitive to temperature and humidity conditions. When I walked into the room, the room felt like a sauna and water was dripping from the ceiling onto this sensitive instrument. My heart sank.... Thankfully, the instrument was not ruined, but it required an expensive recalibration. Why? Phillips Hall was not designed to house such instrumentation.

Not only that, but we have run out of space to install additional instrumentation. This instrumentation is necessary to help us solve future scientific problems and move Wisconsin’s economy forward. The lack of space with proper climate controls is not a good situation.
I strongly urge you to support funding for a new science building at UWEC. I know funding is limited, but I believe a new science building at UWEC is a wise investment in Wisconsin’s future economy.

Thanks so much for your time!

Sincerely,

[Signature]

Kent M. Syverson
Professor and Chair
To: Members of the Joint Committee on Finance for the Wisconsin Legislature

From: Warren H. Gallagher, Professor and Chair of Chemistry, UW-Eau Claire

Date: 12. April, 2019

Re: The need to replace Phillips Hall with a new collaborative learning center for the sciences

I joined the Chemistry faculty at UW-Eau Claire back in January of 1989 and have spent nearly all of my working days for the past 30 years in Phillips Hall. I can say from this experience that Phillips Hall was never designed for what we use it for today. When Phillips Hall was built back in the early to mid ‘60s, it was designed primarily for classroom teaching, including both lecture and laboratory instruction. Since that time, all of the STEM programs that call Phillips Hall their home have evolved to place an increasingly heavy emphasis on collaborative research with undergraduates, an activity that takes place outside of the traditional classroom setting. Also, when Phillips Hall was designed the advances in technology that have occurred over the past 60 years that would reshape the fields of scientific inquiry, were not anticipated. Starting back in the ‘60s and ‘70s, the Chemistry program at UW-Eau Claire was an early adopter of moving students out of the traditional classroom setting and into a laboratory setting to engage them in high impact collaborative research. Nowadays it is expected that students who wish to be competitive for admission to graduate programs and for challenging positions in industry are able to demonstrate that they have had these types of experiences. Despite the many challenges presented by Phillips Hall in pursuing these efforts, the Chemistry program has been demonstrably successful. Using compiled data from 1966 to 2014, the UW-Eau Clare Chemistry program was ranked 13th among its 490 sister Carnegie Comprehensive I & II institutions in the U.S. in the number of graduates who have gone on to earn a Ph.D. in chemistry.1 And of the two-thirds of our graduates who choose not to pursue advanced studies, most find jobs in chemistry-related industries largely located in the upper-midwest. Other indicators of our success include attracting over $4.5 million dollars in competitive external funding over the past ten years to directly support collaborative research activities with undergraduates, and in that same period publishing over 100 peer-reviewed journal articles that included over 240 undergraduate student co-authors. Again, this has been accomplished in spite of the challenging physical environment we have had to work in.

To provide some history, when the first half of Phillips Hall was built in the early 1960’s, it had no air conditioning. Most of the rooms in Phillips Hall have windows with screens that can be opened. Apparently, there was no anticipation that the building would be used in the summers. For the past 30 years this has certainly not been the case in Chemistry, where the fourth floor of Phillips Hall is abuzz with summer programs and classes, and in recent decades with between 30 and 40 students actively doing collaborative research. In the mid-1960’s when the second half of the building was added to the first, there were individual air conditioning units placed in each of the rooms of the new half. This created a situation that was particularly noticeable in the summers where the one half of the building would be futilely attempting to cool the other half. The office wing was included in the half that had no air conditioning until the late 1990’s when a centralize system for cooling the offices on that one wing of the building was installed. While the cooling is done with forced air, the heat is still provided by wall-mounted, steam-fed radiators. Coupling this with the poorly sealed, single-pane windows, and the temperatures and comfort levels in our offices will swing wildly from office-to-office, from day-to-day, and even from hour-to-hour. To provide you with an example of the effect that this can have on our ability to do work collaboratively with students, back in 1989, in my first summer on campus, a student collaborator of mine spent the time growing protein crystals that we planned to use in a series of experiments the following fall. Protein crystals are not easy to grow, requiring lots of trial and error, as well as patience. By the end of summer he had succeeded in growing a

1 National Science Foundation CASPAR database
good supply of crystals for our experiments. We were doing this in a small lab that was located at the time on the office wing. On night of October 1, 1989, the steam heat was activated for the season and the temperature in that lab rose to over 90 °F. When I arrived in the next morning I discovered that all of the protein crystals we had grown over the entire summer had dissolve away. An entire summer’s effort was lost.

During the ‘80s and ’90s there were also many issues with electrical power. It was not designed to anticipate the needs of the many instruments and computers that the department acquired in that time. This led to numerous costly repairs resulting from voltage fluctuations and routine losses of power when the breakers would trip on the overloaded circuits.

In the early 2000s, a multi-year renovation project was carried out on Phillips Hall to upgrade the electric service and to install a centralize HVAC system. This project was highly disruptive at the time for the occupants of the building, especially for the younger faculty members who were trying to get their collaborative research programs established. It forced us to live out of just one-half of the building for three years. When we were able to inhabit our entire space again, it looked pretty similar to what we had before the renovation. The electrical service did become more reliable, and some walls were moved to provide us with additional research space, but this was done at the cost of cannibalizing most of the lecture spaces that were previously located in our area. Upon moving back in to the renovated areas we could appreciate that shoehorning the HVAC system into a building with only 12 ft ceilings must have been a huge challenge for the contractors. Some of our teaching and research labs now have ducts suspended only 8 ft above the floor along with high-voltage light fixtures below them only 7 ft from the floor. Another issue that the new HVAC system needed to contend with were the numerous chemical fume hoods located on the fourth floor of Phillips Hall. The number of hoods has increased over the years as our focus shifted to providing more collaborative research opportunities for our students. The hoods are needed to vent harmful chemical fumes away from areas where students and faculty are conducting research with potentially harmful substances. The fume hoods work in active opposition to HVAC system by exhausting the air that has been heated or cooled out of the building. This air must then be replaced, and during the summers that is often hot, moist air. In addition to increasing the cost of heating and cooling the air in Phillips Hall, this has created a huge issue with humidity and condensation. There are times when water will be dripping from the ducts onto the light fixtures and bench tops holding computers and other equipment. And in areas with suspended ceilings, onto the ceiling tiles, which become stained, and sometimes sage and collapse onto the floor. This is in addition to the many leaks we have historically suffered with because Phillips Hall was designed with a flat roof that is unable to handle the rains and snows we often experience in the upper-midwest. Attached to this memo are some images that better illustrate how some these moisture-related issues are challenging our ability to work with students on the fourth floor of Phillips Hall.

Another big issue with Phillips Hall is the liability issue it presents to the university. Besides the moisture issues described above, which have increasingly exposed its occupants to mold, the building was never designed to house the multiple research areas that we now have. We now have many students working in labs that are tucked in out-of-the-way spaces throughout the building, and this makes it difficult to actively monitor a student’s activities. Best practices now dictates that there should be provisions made for direct line-of-sight monitoring of students that are working in potentially hazardous environments. When Phillips Hall was designed, it was not anticipated that the safety showers and eyewash fountains, which we are required to have in all our labs, should have drains if they were ever intended to be used. This safety equipment is now suppose to be tested weekly, but the lack of drains makes this next-to-impossible to do. When Phillips Hall was designed, it was not anticipated that students would be carrying backpacks. Where to put these in the crowded teaching labs where they will not present a tripping hazard has also been a challenge to deal with. And the bats and wasps that have taken up residence in the building, these are definitely a liability if someone should be bitten.
I could go on-and-on with additional examples of how Phillips Hall was never designed for what we currently use it for. And I would argue that this situation has existed for at least the 30 that I have been on campus. Despite these challenges, we have been able build a national reputation as a center of excellence for collaborative research, and this model of learning now extends well beyond the walls of Phillips Hall. Working in Phillips Hall has made us a scrappy lot. A group capable of overcoming obstacles to pursue our goal of successfully launching our students on a path to successful, productive, and fulfilling careers. Now would be the ideal time to harness our collective energy and vision to design and build a collaborative learning environment that will become a treasured resource for the state of Wisconsin and its citizens.
A combination of leaks and condensation from high humidity levels continually put equipment and people on the fourth floor of Phillips Hall at risk. Here are some examples...

Phillis 467

- Leaks/Condensation causing water to drip onto instruments located in Phillips 467. (7. Sept., 2016)
- The estimated value of the instruments under the tarps is $136,000
The Corridor outside of the General Chemistry labs
(Phillips 469 & Phillips 475)

Here are some examples of the persistent roofs leaks that we experience. Water drips onto the ceiling tiles, which eventually become water logged and collapse onto the floor.

Following a couple of days of torrential rains in August, 2016, the drips from this leak were particularly bad.
Besides the frequent leaks onto the fourth floor of Phillips Hall, the environs also suffer from chronically high humidity levels, especially in the summers.

Phillips 481

Many of the instruments on the fourth floor of Phillips Hall are sensitive to humidity. For example, this differential scanning calorimeter has had to have a couple of costly (>$10k) rebuilds in recent years. The service engineer in both cases attributed the need for the frequent rebuilds to high ambient humidity levels.

Phillips 475

Many other examples abound. For example, any ferrous metallic objects left out for long periods of time in the labs will eventually show signs of corrosion. This is nicely illustrated by the pull chains on the blinds in one of the General Chemistry labs. If you look closely you can see crystals of ferric oxide (rust) growing out from the beads on the chain. While presenting a nice demonstration of chemistry to our students, it speaks ill of the conditions we are exposing them to.
The high humidity levels at times condense onto the HVAC ducts producing water that drips onto the floors, benches, lighting, and electrical outlets, presenting a safety hazard and damaging equipment that has been left out on the benches.

Phillips 452

In some faculty offices, the persistent accumulation of moisture from condensation has led to an appearance of mold on the ceiling tiles and suggests that Phillips Hall may be hazardous to the respiratory health of its inhabitants.
TO: The Wisconsin State Joint Finance Committee
FROM: Dr. Paula Kleintjes Neff, Department of Biology, Chair and Professor
RE: Biology Departmental Feedback re. new UWEC Science Building proposal

As a 26-year veteran of Phillips Hall and current Chair of Biology, I have been asked by UWEC Chancellor Schmidt to provide feedback as you consider a proposed budget for a new Science and Health Science building on the UWEC campus. Our department has been collecting and reviewing information regarding the need and potential for a new science building on campus for several years. In brief, I provide highlights under the following three questions.

What are the current Limitations of UWEC Phillips Hall?

Our current building is outdated for today’s scientists and the scientists and innovators of the future-our students. Research and teaching laboratories are lacking in room availability, square footage, technological efficiency and safety. This is not only for housing equipment and instrumentation but also for supporting the efforts and welfare of the faculty and students within them. Leaks and smells are a consistent occurrence and potential hazard. Early this semester, I entered a 3rd floor classroom at 7:30 am to prepare for class, only to find a leak in the ceiling that damaged the computer projection system and numerous ceiling tiles. All had to be replaced. Similar failures have occurred in other teaching rooms, research labs and our greenhouse and animal care facilities. Physical infrastructure is a mixed bag of good enough, to vastly inadequate to teach our classes, support faculty-undergraduate student research and to recruit and retain faculty.

We are frequently asked to provide data on current space and resources for justification of external grant funding, e.g., the National Science Foundation. We are limited by our current facilities that otherwise would strengthen a proposal. Faculty do not pursue as many research opportunities of interest as individuals, teams or collaborative external partnerships not because of lack of capability or external funding but rather because of the limited facilities we have to successfully support experimental design and application in Phillips Hall. We have no existing room for growth for collaborative external partnerships and no student or faculty should be working in an isolated, windowless space that would make them feel vulnerable or unsafe.

What are our successes despite physical building limitation?

We support approximately 700 majors/year and numerous non-majors, all in need of equitable access to productive and collaborative learning spaces. In the past few days, I have had numerous students share their acceptances into medical and vet schools, prestigious grad schools, and government seasonal technician positions just to name a few. However, I am not confident that our facilities can remain “good enough” or can be repaired or retrofitted for the 21st century to continually support foundational learning and career success.

Despite some of our current limitations, the majority of Biology department faculty make do, often off the clock. At any given time they have successfully received internal or competitive external funding, via federal and state grants and corporate and non-profit partnerships or in-kind funding. Such funds partially support the ambitious and productive science we do in collaboration with undergraduates. Our students collaborate with each other and their faculty mentors in the lab and the field to collect and analyze data, and to share their results with the larger community via scientific presentations and co-authored peer-reviewed publications. Our students succeed and pursue careers across the breadth of biology from microbiology to freshwater ecology, in a variety of fields including medicine, education, research, and private consulting, etc. A further testimony of our success is when a prospective student informs us that we are their top choice for college, even when they visit with their parents, proud Blugold alumni, who declare “Great department, but this building hasn’t changed since I was a student!".
How would a new building better serve UWEC students, faculty and the community?

Given published metrics of job needs and career interests in the life sciences of the future, we envision current and new programs in biology to grow but we need a building that can accommodate such growth. A new building would be designed to provide a world-class learning space for general science education of our biology majors, non-majors, AND the public. It would have well-designed, aesthetic, accessible and safe research labs; lab prep and safe disposal areas; collaborative learning, teaching and research spaces; greenhouse, environmental chamber and animal care facilities; biological collection specimen display and archives; aquatic labs; field, bench and biosafety labs, plus much more. Such improved and modern facilities would provide more opportunities for course-embedded research, mentored-research, high impact experiences with community partners, global engagement and a scaffolded skill-building curriculum, to name just a few ideas. These are critical for the continued development of all students, the scientists and citizens of the future, who can think, ask questions, solve problems and be more engaged and employed in their communities.
April 9, 2019

To the members of the Joint Committee on Finance

The Department of Physics and Astronomy at UWEC has worked hard to earn our status as a national leader in undergraduate physics education. In terms of numbers of graduates each year, we consistently rank in the top 10% of all physics programs in the United States and the American Institute of Physics cites us as a model program for successfully preparing our students for post-baccalaureate careers. That we have managed to do this in facilities that are inferior to those of our competitors is a credit to our resourcefulness. Unfortunately, we are starting to see enrollment declines that suggest the advantage we have in faculty is being outweighed by an obsolete building. If we are to continue to provide an outstanding education to the students who will form the backbone of the advanced technology workforce that Wisconsin will need to thrive, we must have the tools to do so.

There are a number of ways in which a new building would provide a significant boost to the physics program and lead directly to a larger number of graduates ready to join leading-edge technology companies in the state. I will outline just a few of them here, highlighting the aspects of our program that have made us successful and how they will be enhanced with modern facilities. Instruction is the most highly valued activity in the department and we work hard to incorporate the most effective techniques and technologies in both our lectures and labs. While Phillips Hall has undergone a number of retrofits over its nearly sixty years, the results are often inadequate. For instance, we often use chalkboards and video data projectors at the same time so that we can simultaneously show an animation of dynamic phenomena while demonstrating how to mathematically model it so that we can use the model to solve real-world problems. This is difficult to do when the projector screen significantly overlaps the board and we have to go back and forth, breaking the flow of the explanation and at times causing confusion among the students. This was not a problem in the 1962, when video data projectors and PowerPoint did not exist so it is understandable why classrooms are not configured for this situation. Unfortunately, our students are children of the 21st century and have choices of how to pursue their education. Our antiquated classrooms and labs are a definite disincentive for students to consider UWEC despite our incredible faculty. It is like trying to win a race with a Model T against a Ford Mustang. Richard Petty could be in the Model T but even he would to lose to nearly anyone with a valid drivers license driving the Mustang.

The department’s current research space is barely enough for staff and students to perform their work. We require students to engage in a research project or internship to graduate. This requirement helps students learn to apply what they have learned in the classroom to real-world problems and prepares them for their careers after graduation. Given the number of students in our program we always have a substantial number of projects going on and we often scramble to find ways to fit them into the space we have. In addition, some of these projects require special equipment, like fume hoods, sinks, or high current. We also have number of computational and data analysis projects that require us to maintain several computers which need space and network connectivity. As a result, our research spaces are cramped and inefficient. A new building would provide much better access to special need items and allow a more rational allocation of space than we are currently able to accomplish, providing the opportunity for more students to engage in meaningful research work.
Finally, an important set of support spaces are the shops the department operates. We are responsible for the wood shop, metal shop, and a digital fabrication lab. The shops allow us to make repairs on existing equipment, build custom apparatus for instruction and research, and provide an opportunity for students to develop marketable skills using machine tools. All the shops are too small and poorly served by HVAC and water because they are in spaces that were not originally designed to be shops. The tight spaces make working in them a challenge and are also a safety concern. A new building with rooms intentionally created for these maker spaces would not only be easier to use, but also reduce the possibility of accidents.

The Department of Physics and Astronomy has established its reputation by being diligent and resourceful. These attributes will not disappear if we are able to move into a modern science building. In fact, we expect a new facility to magnify these traits and attract even more students who will graduate with the skills needed to grow Wisconsin’s economy.

Lyle Ford
Professor and Chair, Department of Physics and Astronomy
University of Wisconsin, Eau Claire
April 8, 2019

Chancellor James Schmidt

University of Wisconsin, Eau Claire

Re: Science and Health Science Building

Dear Chancellor Schmidt:

Mayo Clinic Health System Northwest Wisconsin (MCHS-NWWI) and the University of Wisconsin-Eau Claire announced the Research Collaborative agreement between the two institutions in the spring of 2017. This agreement has been very successful for both institutions with clearly defined benefits for students and patients within the Chippewa Valley. Within the first year, this collaboration yielded more than a dozen jointly developed projects with the plan to double annually. These efforts are creating new professional opportunities for student learners, faculty, and providers to engage in real-world projects intending to improve the lives of our patients in this region. MCHC-NWWI has been very supportive of UW-Eau Claire’s efforts to propose the new Science and Health Science Building on the UW-Eau Claire campus. This new collaborative working space will allow the two institutions to design optimal work flows to maximize cross-functional collaboration that will launch innovative science and health care in western Wisconsin beyond what is currently possible. MCHS NWWI has set a philanthropic goal is to raise 13.7 million dollars which will allow MCHS NWWI to create and occupy the fit-for-purpose ~10,000 square feet in the new Science Building. This collaborative space will provide the first-of-its-kind location for Mayo Clinic to fully align with UW-Eau Claire faculty and students to share the responsibility of creating a discovery hub for next-generation rural medicine. The research community within the center will be comprised of integrated allied health staff, administrators, students, nurses, physicians, educators, scientists, and engineers. Dr. Richard Helmers states “We are fully committed to accelerating this shared vision with UW-Eau Claire, a vision that aligns with Mayo Clinic’s three-shield mission of clinical practice, education, and research.”

Sincerely yours,

Dr. Timothy Nelson, MD, PhD
Director of Innovation and Research, MCHS, NWWI

Dr. Richard Helmers, MD
Regional Vice-President, MCHS, NWWI

Dr. Bobbie Gostout, MD
Vice President, Mayo Clinic

Luther Campus – Clinic
1400 Bellinger St.
Eau Claire, WI 54703-5211
715-838-5222

Luther Campus – Hospital
1221 Whipple St.
Eau Claire, WI 54703-5200
715-838-3311

Clairemont Campus
733 W. Clairemont Ave.
Eau Claire, WI 54701-6117
715-838-5222