Site Feedback

Garfield Avenue project affects travel on lower campus.

The project is expected to be completed in fall 2018, and the footbridge will be closed from late May to late August in both 2017 and 2018.

More information

Our most valuable resources

The unique nature of our institute allows us to pull expertise from all across the university. Our core faculty, along with the affiliated faculty, all have a strong passion for our environment and public health. It is this common thread that ties us all together and allows us to provide one of the best undergraduate programs in environmental health. The environmental and public health areas are constantly changes and facing new issues and our faculty are constantly following and researching these issues to better serve our community and beyond.

Watershed Institute faculty and staff

Karen Mumford, PhD

Dr. Mumford's studies and work have been focused on environmental issues throughout her academic and professional careers. She majored in Biology and Religion at St. Olaf College, and believes this was the beginning of her interest in the interdisciplinary ways that both science and religion help people understand the world. She studied Fisheries Biology for her master's degree from Iowa State University. Later, she earned an Environmental Planning degree from the University of Iowa that allowed her to work for a year in the Office of the Governor of Illinois. She completed her doctoral degree in Conservation of Biology from the University of Minnesota.

Dr. Mumford has taught at a number of universities, including Emory University in Atlanta, where she was part of the multi-university Healthy Places group. Her research examined how mixed use developments and parks can play important roles in promoting healthy places for people as well as plants and animals. Her most recent teaching position was at the University of Minnesota-Morris, where renewable energy infrastructure and conservation led the school to be the first to achieve carbon neutrality. Inspired by this experience, she continues to engage in campus sustainability research.

UW-Eau Claire appealed to Dr. Mumford because of its focus on interdisciplinary research and teaching, and the opportunities for collaboration with students and faculty. She has been teaching courses within the Watershed Institute for Collaborative and Environmental Studies since 2011. The Watershed Institute believes collaborative student-faculty teaching and research on environmental issues is important, and is grateful for the opportunities that Dr. Mumford and her courses provide. She is enjoys examining sustainability in the contexts of the Watershed Institute, UWEC's amazing students, faculty, and staff, and the rich community.

In her free time, Dr. Mumford enjoys fishing, skiing (both downhill and Nordic), tennis, and especially spending time at her family cabin in northern Wisconsin. She loves living in Eau Claire's beautiful landscape of rivers, hills, and woods, and is happy to work with both the campus and community on sustainability issues.


Dr. Boulter earned his undergraduate degree in Chemistry and Biochemistry with a certificate in Environmental Studies at Pacific Luthern University in Tacoma, Washington. He then went on to earn his Ph. D. in Analytic Chemistry with a certificate in Atmospheric and Oceanic Sciences at the University of Colorado-Boulder.

Before coming to UW-Eau Claire, Dr. Boulter worked various position in the field of chemistry in Seattle, Washington and Colorado, such as a graduate instructor at CU-Boulder and a research assistant as a post-doctoral fellow. Since 2004 he has been a member of the faculty in the Chemistry department at UW-Eau Claire. From 2011-2012,Dr. Boulter also served as the Sustainability Fellow, tracking efforts to reduce UW-Eau Claire's carbon footprint and working to support and coordinate initiatives to improve sustainability on campus. He currently hold the position of director of the Watershed Institute for Collaborative Environmental Studies. Throughout his career, he has earned several teaching awards from both CU-Boulder and UW-Eau Claire including the UW-Eau Claire Excellence in Advising Award in 2013.

Dr. Boulter's research interests focus on energy and climate issues and atmospheric chemistry, specifically particles in the atmosphere. His projects and graduate work were based on working with diverse range of particles, from ice particles in the upper atmosphere to silica particles at the ground level. He has given many talks and presentations focusing on topics including the environment, sustainability and climate change.

Outside of his academic pursuits, Dr. Boulter enjoys spending time with his wife and their labradoodle, Marty. He is also a musician;he played the trumpet in symphonies and brass quintets throughout school and currently sings in the chorale group, The Master Singers.


Dr. Pierce earned his undergraduate degree in Biology from the University of California-Santa Cruz before continuing on to earn his M.S. in Bioenvironmental Studies from California State University at Hayward and his Ph.D. in Pharmaceutical Chemistry (emphasis toxicology) from the University of California-San Francisco. He completed a postdoctoral fellowship in toxicology at the University of Washington in Seattle.

Dr. Pierce came to UW-Eau Claire in 2003 and holds the position of Associate Professor of the Environmental Public Health program. Previously, he worked as a lecturer and research scientist in Washington and as a toxicologist in California. Dr. Pierce teaches classes including Introduction to Environmental Health, Water and Wastewater, Solid and Hazardous Waste Management, and Environmental Toxicology and Risk Assessment.

The focus of Dr. Pierce's teaching and research is environmental and public health and developing environmental health competencies for future public health professionals. Research focus includes measurement of airborne fine particulates and silica around frac sand plants in Wisconsin and measurement of heavy metals in human hair as predictors of disease, for which he was recognized as a Fulbright Scholar to Finland.

He is the author of 25 peer-reviewed publications and his invitational presentations include "Identifying Home Environment Hazards" and "Health Consequences of Energy Choices."

Active in the community, Dr. Pierce serves on the City of Eau Claire Advisory Committee on Sustainability and Earth Day Celebration Planning Committee.


Dr. Soll came to UW-Eau Claire from Lafayette College, in Easton, Pennsylvania, where he was a post-doctoral fellow in Environmental Studies. Prior to his post-doctorate work, Dr. Soll taught at two Boston area universities, Bentley University and Brandeis University.

Dr. Soll's teaching style urges students to think about how their lifestyles tie into larger environmental issues. In his classes, Dr. Soll wants students to make connections between systems, like governmental systems and water systems, for example. Dr. Soll's expertise in governmental policy and history allows him to shed light on the relationship between scientific evidence and the policy that restricts it. In the coming semesters he will be teaching classes on environmental history and environmental policy. Many of these classes will be hybrids joining political science and environmental science.

Dr. Soll's main environmental focus is on water. In the spring of 2013 he had his book published, Empire of Water: An Environmental and Political History of the New York Water Supply. It follows the history on the water supply in one of the biggest cities in the world. His next research project will focus on comparing urban water supplies in the developing world.

Besides fulfilling the role of a professor, Dr. Soll is a husband and a father. He lives in the Twin Cities with his wife Sara and son, Max. Dr. Soll enjoys the outdoors in his spare time; he goes hiking, biking and boating.


Dr. Suppes earned her bachelor's degree in Environmental Public Health at the University of Wisconsin-Eau Claire. She then continued her studies in Public Health Policy and Administration at the University of Minnesota with an emphasis in global health. She finished her doctorate studies at the University of Arizona in Environmental Health Sciences with a certificate in Water Policy.

Before coming to UW-Eau Claire, Dr. Suppes worked as a Registered Environmental Health Specialist in Ramsey County, MN and as a teaching and research assistant at the University of Arizona. She joined the Watershed Institute faculty in August 2013 and teaches several Environmental Public Health classes including Introduction to Environmental Health, Global Environment and Public Health, Environmental Law and Water and Wastewater.

Dr. Suppes's research interests focus on waterborne and water-based pathogen exposure and risk assessment, as well as chemical, biological and physical hazard identification and remediation in water environments (lakes, rivers and swimming pools, etc.). She has worked with students on projects including a study surveying pharmaceuticals, endocrine disrupting compounds and personal care products in swimming pools.

Outside of the world of academia, Dr. Suppes enjoys hockey, nordic skiing, the outdoors and pottery.

Affiliated Faculty

Ruth J. Cronje

 “[I am] particularly interested in urban sustainability initiatives including creating wildlife habitats and growing food on residential properties in cities and suburbs as a way to promote biodiversity, food-shed responsibility.” Dr. Cronje’s environmental involvement includes coteaching Environmental Conservation and Action at UW—Eau Claire, a class that coincides with the Pedal Paddle Pollution Tour of the Chippewa River. She is also a member of the Wisconsin Association of Environmental Education as well as the Association for the Rhetoric of Science and Technology. Dr. Cronje is the director of the English Department Internship in Writing program at UW—Eau Claire.

She earned her Ph.D. in Rhetoric and Scientific and Technical Communication from the University of Minnesota.

Doug Faulkner
  • Ph.D., University of Wisconsin-Madison (Geography)
  • M.S., University of Wisconsin-Madison (Geography)
  • M.S., University of Wisconsin-Madison (Water Resources Management)
  • B.A., Oxford University (Philosophy, Politics, and Economics)
  • B.A., University of Nebraska-Lincoln (Geography)
Research Interests
  • Recent channel change of the Lower Chippewa River
  • Late Quaternary geomorphic history of the Lower Chippewa River valley
  • Holocene fluvial history of the central Great Plains
  • Human impacts on fluvial systems
  • Fluvial adjustments to environmental change
  • Watershed sediment delivery
  • Floodplain sedimentation
  • GEOG 104: The Physical Environment
  • GEOG 178: Conservation of the Environment
  • GEOG 340: Climatology
  • GEOG 363: Watershed Analysis
  • GEOG 364: Fluvial Processes and Landforms
  • GEOG 368: Geography Field Seminar (Geography of Hawai'i)
Sean Hartnett
  •  Ph.D., University of Wisconsin-Madison (Geography)
  • M.S., University of Wisconsin-Madison (Geography)
  • B.A., Beloit College
Research Interests
  • Survey and Mapping Bathymetry of Lake and Rivers, the Geography of the Marathon, Lower Chippewa River
  •  GEOG 178: Conservation of the Environment
  • GEOG 280: Cartography
  • GEOG 339: Computer Mapping

 Paula K. Kleintjes Neff, Professor “Take time to immerse yourself in the splendor of nature and while you’re at it, do the same for a child” Dr. Kleintjes Neff teaches Conservation of the Environment, Conservation Biology, General Entomology and numerous field courses at UW-Eau Claire. Her primary interests include working with students, conducting research in insect ecology and conservation and encouraging society to lessen their reliance on pesticides. Her research, published articles, and community presentations focus on butterflies, their relationship with the environment, and the conservation of their habitats. She has been a long time research collaborator with the National Park Service and USDA NRCS and board member of the Friends
of Beaver Creek Reserve and Citizen Science Center. Dr. Kleintjes Neff earned her Ph.D. at the University of California—Berkeley in the Department of Environmental Science, Policy and Management- Division of Insect Science.

Wayne Carroll
Phillip Ihinger
  • Ph.D., Geology, California Institute of Technology, Geology
  • M.S. California Institute of Technology, Geochemistry
  • B.A., Pomona College, Geology
Teaching Interests
  • Earth Resources
  • Global Environmental Change
  • Mineralogy &Petrology I, II, &III
  • Physical Geology
Research Interests

My research agenda focuses on three programs: (1) the theoretical and analytical study of hot-spot magmas in the oceanic and continental environment, (2) the experimental and analytical study of the role of volatiles in magmatic processes, and (3) the role of water in nominally anhydrous minerals, with emphasis on hydrous impurities in quartz crystals and how they can be used to study the process of crystal growth from hydrothermal solutions. Here, I briefly introduce these programs and provide a summary of their accomplishments.

I. Theoretical and analytical studies of hot-spot magmas: This program is devoted to understanding mantle plumes and interpreting the physical and chemical constraints that hot spots provide regarding the structure and evolution of the mantle. This work has resulted in a new model for the evolution of hot spot magmatism. My model is based on previously unexplained observations of Hawaiian volcanism, including the segregation of the hot-spot track into well-defined volcano lineaments. Individual chains of volcanoes along the Hawaiian track show faster age progression within each chain compared to the average propagation rate of the Pacific plate. Additionally, the two youngest chains (each with well-sampled volcanoes) show age-progressive trends in their geochemistry. The new model invokes the segregation of the upwelling plume into discrete blobs that arise from shear created by flow in the mantle. The model is substantiated by numerous experimental and theoretical studies in the earth science literature, and if it is correct, it requires that we change our paradigm regarding the nature of mantle convection, the driving force of plate tectonics, and the chemical evolution of the mantle.

To test this model, I have undertaken comprehensive studies of plume-related magmatism within the continental setting, where sampling between and within individual lineaments is possible. I have selected two field areas for geochemical characterization;the Cretaceous New England Lamprophyre Suite, and the Eocene Montana Alkaline Province. The New England Suite is a part of an elongate alkaline magmatic province that trends in time and space from the interior of the Canadian craton across the mid-Atlantic ridge. In the oceanic setting, the volcanic lineament is known as the New England Seamount Chain, which tracks across the floor of the Atlantic Ocean to the active Great Meteor Hotspot. Within the continental setting in New England, three distinct east-west lineaments are discernable. Our study has characterized the geochemical fingerprint of this continental alkaline lamprophyre province and matches it with the geochemical signature of the seamounts. Linking the continental alkaline magmatism to hot-spot origins has profound new implications for our understanding of the origin of intraplate alkaline lamprophyres and their cousins, the kimberlites and carbonatites. We are continuing the study of these rocks in order to compare the chemical and age progressions along each of the three magmatic lineaments within the New England province with the observations along the Hawaiian volcano trends.

Not all alkaline igneous provinces are associated with age-progressive lineations. Since coming to UW-Eau Claire, my students and I have begun to characterize the nature and chemistry of the Eocene high-K magmatic province in central Montana. No simple theory for the origin of these peculiar rocks can explain the vast production of mantle-derived material under the North American craton at that time. In collaboration with UW-Eau Claire students Luke Beranek, Jesse Bernhardt, Benjamin Paulson, and James Watkins, we hope to compare and contrast these two seemingly disparate magmatic provinces with the aim of furthering our understanding of melt production under an otherwise tectonically-stable craton.

II. Experimental and analytical studies on the role of volatiles in magmatic processes: The second program in my research agenda involves the experimental and analytical study of volatiles in minerals and melts. This topic is important to every aspect of earth science, as it is central to the understanding of the origin and evolution of the Earth's oceans and atmosphere, as well as global change on both the shortest time scales (e.g., the immediate effect of volcanic eruptions on the Earth's temperature) and on the longest time scales (e.g., the dependence of volcanic input on the global cycles of H, C, and S). The volatile contents of natural magmas show tremendous variability throughout magmatic evolution. As such, volatile content variability is the most important control on source melting temperature, on magma rheology during transport through the crust, on the kinetics of crystallization, and on the explosivity of eruption. Simply put, volatiles control the origin, the evolution, and the fate of every natural magma and thus control the chemical differentiation of the Earth.

Some of the contributions of this aspect of my program to date include:

  1. The first experimental study to determine quantitatively the effect of water on the kinetics of homogeneous crystal nucleation in silicate melt, and the discovery that this effect exhibits universal behavior such that we can accurately predict the number of crystals that will nucleate after any prescribed time from a melt of any prescribed hydroxyl content.
  2. The discovery that crystals can nucleate on bubbles in silicate melt, with implications for the development of groundmass texture in shallow intrusive rocks. This study resulted in a patent for the development of ceramics with prescribed crystallinities with potentially lucrative industrial applications.
  3. The determination of the effect of cooling rate on homogeneous crystal nucleation in silicate melt. This study allows us to explore the degree of crystallinity expected for silicate magmas as they rise through the crust and erupt on the earth's surface.
  4. The first determination of the effect of water on the time scales required for the relaxation of silicate melt to its equilibrium structural configuration. This study gives insights into melt behavior and allows us to measure the time scales associated with magmatic processes that occur during intrusion and eruption.
  5. The first observation of correlated carbon isotopic composition and CO2 concentration in a natural suite of igneous rocks (the Cretaceous New England lamprophyres). This study depicts the degassing history of the alkaline magmatic system and constrains the fractionation factor that governs melt-vapor carbon isotope partitioning in the CO2-saturated magmatic system.
  6. The first measurement of the hydrogen isotopic composition of water-bearing nominally anhydrous minerals from the mantle. These results offer a new view into the nature and evolution of global hydrogen reservoirs.

These contributions represent collaborative efforts with my students: (1) - (4) represent the dissertation and post-doctoral work of Mark Davis (Yale PhD, 97);and (5) - (6) represent the dissertation work of Shona Smith (Yale PhD, 00), and collaborations with undergraduate students Ken Andersen (Yale 95), and Matt Jackson (Yale 00).

III. Water in nominally anhydrous minerals and crystal growth kinetics of hydrothermal quartz: In collaboration with undergraduate students Steve Zink (Yale, 96) and An-Lin Bardin (Yale, 97), we have undertaken a detailed study of the distribution and abundance of hydrous impurities in natural quartz crystals. We have discovered that the molecular water concentration incorporated in a growing crystal face serves as a growth speedometer by recording the relative growth rates in the quartz crystal. Remarkably, we have seen that two crystal faces that grew from the same fluid at the same time on the same crystal actually grew at order-of-magnitude differences in rates. This phenomenon leads to what is commonly termed "sector zoning". Our study quantifies the growth rates experienced by individual growth faces. In addition, we discovered that our IR measurements on Li-OH and Al-OH concentrations in these quartz crystals enable us to follow the changing Al and Li concentration in the fluids from which they grew, and additionally constrain the post-crystallization thermal histories that our natural samples had experienced. Our work was recently featured on the cover of Nature:

Ihinger, P. D., and Zink, S. I. (2000) Determination of relative growth rates of natural quartz crystals, Nature, 404, p. 865-869.

With recently acquired NSF funding, we will calibrate our "water speedometer" by measuring the water contents of crystals grown in controlled environments at known rates. UW -Eau Claire students Jacob Chmielowiec and Ryan Prechel will analyze synthetic quartz samples (provided by Thermo Dynamics, Inc. of Merriam, Kansas) with precisely known growth rates. We will additionally perform diffusion experiments to constrain the parameters that control H-OH, Li-OH, and Al-OH mobility within the crystals after they have grown in order to constrain the thermal histories of quartz crystals in the natural environment that show measured diffusion profiles.

Ihinger, P. D., and Stolper, E. M. (1986) The color of meteoritic hibonite: An indicator of oxygen fugacity. Earth and Planetary Science Letters, v. 78, p. 68-79.

Silver, L. A., Ihinger, P. D., and Stolper, E. M. (1989) The influence of bulk composition on the speciation of water in silicate glasses. Contribution to Mineralogy and Petrology, v. 104, p. 142-162.

Ihinger, P. D., Hervig, R. L., and McMillan, P. F. (1994) Analytical methods for volatiles in glasses. Reviews in Mineralogy, v. 30, p. 67-121.

Bell, D., Ihinger, P. D., and Rossman, G. (1995) Quantitative Analyses of Trace Hydroxyl in Garnet and Pyroxenes. American Mineralogist, v. 80, p. 465-474.

Zhang, Y., Stolper, E. M., and Ihinger, P. D. (1995) Kinetics of reaction H2O + O = 2OH in rhyolitic glasses: Preliminary results. American Mineralogist, v. 80, p. 593-612.

Ihinger, P. D. (1995) Mantle flow beneath the Pacific plate: Evidence from seamount segments in the Hawaiian-Emperor chain. American Journal of Science, v. 295, p. 1035-1057.

Davis, M. J., Ihinger, P. D., and Lasaga, A. C. (1997), The influence of water on nucleation kinetics in silicate melt, Journal of Non-Crystalline Solids, v. 219, p. 62-69.

Zhang, Y., Belcher, R., Ihinger, P. D., Wang, L., Xu, Z., and Newman, S. (1997), New calibration of infrared measurement of dissolved water in rhyolitic glasses, Geochimica et Cosmochimica Acta, v. 61, p. 3089-3100.

Davis, M. J., and Ihinger, P. D. (1998), Heterogeneous crystal nucleation on bubbles in silicate melt: American Mineralogist, v. 83, p. 1008-1015.

Davis, M. J., and Ihinger, P. D. (1999), New controlled rapid quench technique in a 1-atm infrared image furnace: American Mineralogist, v. 84, p. 48-54.

Davis, M. J., and Ihinger, P. D., (1999), Influence of hydroxyl on glass transformation kinetics in lithium disilicate silicate melt and a re-evaluation of structural relaxation in NBS 710 and 711, Journal of Non-Crystalline Solids, v. 244, p. 1-15.

Ihinger, P. D., Zhang, Y., and Stolper, E. M. (1999) The speciation of dissolved water in rhyolitic melt. Geochimica et Cosmochimica Acta, v. 63, p. 3567-3578.

Smith, S. C., and Ihinger, P. D., (1999) Origin and evolution of mafic alkaline magmas: constraints from the mineral chemistry of the New England lamprophyre suite, in The P.H. Nixon Volume, eds. Gurney, J. J., Gurney, J. L., Pascoe, M.D., and Richardson, S. H., p. 795-807.

Bell, D.R., and Ihinger, P.D. (2000) The isotopic composition of hydrogen in nominally anhydrous minerals. Geochimica Cosmochimica et Acta, v. 64, p. 2109-2118.

Ihinger, P.D., and Zink, S. (2000) Determination of relative growth rates of natural quartz crystals. Nature, v. 404, p. 865-869.

Ihinger, P.D., and Zink S. (2001) Control of defect concentrations in single crystals: insights from natural hydrothermal quartz crystals, in Inorganic Optical Materials III, A. J. Marker III, M. J. Davis, eds., Proceedings of SPIE, Vol. 4452, p. 7-16.

Davis, M. J., and Ihinger, P. D. (2002) Effect of thermal history on crystal nucleation in silicate melt I. Experimental results, Journal of Geophysical Research, in press.

Ihinger, P. D., Stolper, E. M., and Epstein, S. (1990) Hydrogen isotope fractionation between rhyolitic melt and hydrous vapor at 850°C. In V.M. Goldschmidt Conf Program and Abstracts II, p. 55.

Zhang, Y., Stolper, E. M., and Ihinger, P. D. (1990) Reaction Kinetics of H2O + O = 2OH and its equilibrium, revisited. In V.M. Goldschmidt Conf Program and Abstracts II, p. 94.

Ihinger, P. D., and Bell, D. R. (1991) Isotopic composition of hydrogen in nominally anhydrous mantle minerals, EOS Trans. AGU, Fall Meeting Suppl., p. 537.

Bell, D. R., Rossman, G. R., and Ihinger, P. D. (1991) Hydroxyl in upper mantle minerals, EOS Trans. AGU, Fall Meeting Suppl., p. 537.

Watson L. L., Ihinger P. D., Epstein S., and Stolper E. M. (1991) Hydrogen, carbon, and oxygen isotopic composition of volatiles in Nakhla, Lunar and Planet. Sci. XXII, Lunar and Planetary Institute, Houston, p.1473-1474.

Ihinger, P. D. (1992) Evolution of global hydrogen reservoirs: Isotopic constraints from water-bearing, nominally anhydrous mantle minerals, EOS Trans. AGU, Spring Meeting Suppl., p. 141.

Ihinger, P. D. (1993) Mantle flow beneath the oceanic lithosphere: Evidence from individual en echelon seamount segments along hot-spot tracks, EOS Trans. AGU, Spring Meeting Suppl., p. 598.

Ihinger, P. D. (1993) Mantle flow beneath the Pacific Plate: Evidence from seamount segments in the Hawaiian-Emperor Chain, GSA Annual Mtg. Suppl, Abstracts with Programs, Vol. 25, No. 6, p. A-197.

Newman, S., Blouke, K., Bashir, N., Ihinger, P. D., and Stolper, E. (1993) Cooling of rhyolitic volcanics-evidence from melt inclusions, GSA Annual Mtg. Suppl, Abstracts with Programs, Vol. 25, No. 6, p. A-43.

Davis, M. J., Lasaga, A. C., and Ihinger, P. D. (1993) Significant T-t hysteresis of the nucleation rate of lithium disilicate--melt speciation kinetics? EOS Trans. AGU, Fall Meetng Suppl., p. 630.

Ihinger, P. D. (1994) A "plumelet" model for the generation of en echelon patterns along hot-spot tracks, EOS Trans. AGU, Fall Meeting Suppl., p. 726.

Davis, M. J., and Ihinger, P. D. (1994) The effect of thermal history on homogeneous nucleation in silicate melt. EOS Trans. AGU, Fall Meetng Suppl., p. 702.

Ihinger, P. D., and Andersen, K. M. (1995) A "plumelet" model for the generation of New England lamprophyres. NEGSA Annual Mtg. Suppl, Abstracts with Programs, Vol. 27, No. 1, p. A-57.

Zhang, Y., Belcher, R., and Ihinger, P. D., (1995) Calibration of IR measurement of water in glasses: Absorptivities, EOS Trans. AGU, Spring Meeting Suppl., p. F650.

Davis, M. J., and Ihinger, P. D. (1995) The effect of water on crystal nucleation in lithium disilicate melt, EOS Trans. AGU, Fall Meeting Suppl.

Davis, M. J. and Ihinger, P. D. (1996) Crystal nucleation on bubbles in hydrous silicate melt, EOS Trans. AGU, 77(46), Fall Meeting Suppl., p F819.

Bonneville, A., Davaille, A., and Ihinger, P. D. (1997) Viscous Fingering and Double Hotspots. EUG Abstracts with Programs.

Davis, M. J. and Ihinger, P. D. (1997) The influence of water on crystal growth rates in silicate melt, EOS Trans. AGU, 78(46), Fall Meeting Suppl., p F834.

Smith, S. and Ihinger, P. D. (1997) Volatile evolution in mafic alkaline rocks: A stable isotopic study of the New England Lamprophyre suite, EOS Trans. AGU, 78(46), Fall Meeting Suppl., p F813.

Zink, S., and Ihinger, P. D. (1997) Microscopic IR investigation of water in gemmy quartz crystals: growth histories revealed, GSA Abstracts with Programs, p. A91.

Smith, S. C., and Ihinger, P. D., (1998) Geochemical evolution of the New England lamprophyre suite: a hotspot signature preserved in the continental crust?, Abstracts of the VII International Kimberlite Conference, V. 7, p. 820-822.

Ihinger, P. D., and Smith, S. C. (1998) Deuteric processes in mafic alkaline rocks: distinguishing mantle from crustal-derived volatiles in the New England Lamprophyre Suite, EOS Trans. AGU, 79(46), Fall Meeting Suppl., p. F979.

Davis, M. J., Ihinger, P. D., (1998), Influence of water on glass transformation kinetics in lithium disilicate melt, submitted EOS Trans. AGU, 79(46), Fall Meeting Suppl., p. F1017.

Gazis, C., and Ihinger, P. D., (1999), Stable isotopic compositions and H2O concentrations of rhyolitic glasses from the Chegem Caldera (Caucuses Mountains, Russia), GSA Annual Mtg. Suppl, Abstracts with Programs.

Ihinger, P. D., and Smith, S. C. (1999) The role of volatiles in the origin and evolution of mafic alkaline rocks, EOS Trans. AGU, 80(46), Fall Meeting Suppl, p. F1133.

Ihinger, P. D., Woglom, E., &Skorina, L., (2000) Experimental Results Bearing on Hydroxyl Sub-Speciation in Low-Pressure Silicate Melts, EOS.

Jackson, M. G., and Ihinger, P.D. (2000) Carbonatite expulsion from a lamprophyre: an integrated geochemical study of dike-wall rock interactions, GSA Abstracts with Programs, V. 32, no. 7, p. A436.

Ihinger, P. D., Chamberlin, S., and Smith, S. C. (2002) INORGANIC TERRESTRIAL ANALOG FOR CARBONATE-MAGNETITE-PYRITE ASSEMBLAGE IN ALH-84001, Lunar and Planet. Sci. XXXIII, Lunar and Planetary Institute, Houston, in press.


Paul Kaldjian
  • Ph.D., University of Arizona (Geography)
  • M.A., University of Arizona (Geography)
  • M.S., University of Michigan (Water Resources Sciences)
  • B.S., University of Michigan (Geology &English Literature)
Research Interests
  • Urban Agriculture
  • Food Systems
  • Istanbul, Turkey &the Middle East
  • Finland and Baltic Region
  • GEOG 111: Human Geography
  • GEOG 319: Geography of Middle East &North Africa
  • GEOG 366: Geography International Immersion Experience (UWEC in Turkey)
  • GEOG 367: Landscape Analysis: Cultural (Migration and Western Wisconsin)
  • GEOG 369: Geography of Food
  • GEOG 401: Geography Capstone Seminar
J. Brian Mahoney

 J. Brian Mahoney, Professor “I offer significant geologic and environmental experience, and I am deeply committed to collaborative, interdisciplinary teaching, particularly experiential activities.” Dr. Mahoney teaches Societal Issues in the Earth Sciences, one of the interdisciplinary courses in the Department of Geology and UW—Eau Claire. He is also the coordinator of the TIES (Thematic Interdisciplinary Experiential Semester) program, which gives students the opportunity to study abroad in a variety of different countries. Dr. Mahoney specializes in sedimentation and tectonics and has published field guides for the regional Paleozoic stratigraphy of the Upper Mississippi Valley. Dr. Mahoney received his Ph.D. in Geology from the University of British Columbia in Vancouver, B.C.


 Dr. McAleer specializes in ethical theory and the history of ethics. He teaches Environmental Ethics at UW—Eau Claire. Dr. McAleer’s publications include “Four Solutions to the Alleged Incompleteness of Virtue Ethics” in the Journal of Ethics and Social Philosophy and “The Virtues of Humor: What The Office Can Teach Us About Aristotle’s Ethics” in The Office and Philosophy. Dr. McAleer’s professional presentations also include “The Treasure of the Sierra Madre and Environmental Virtue Ethics.” Dr. McAleer graduated from Syracuse University with a Ph.D. in Philosophy.


 Tarique Niazi, Associate Professor “The common thrust of my work, especially teaching and research, centers on the interaction between natural and social systems, and their impact on natural and social communities.” Dr. Niazi’s areas of expertise are Environmental Security, Environmental Sociology, Sociology of Nationalism and Ethnicity, and Sociology of Social Change. He teaches Environmental Sociology and Sociology of the Middle East as part of the Sociology program at UW—Eau Claire. Dr. Niazi has contributed to the International Encyclopedia of Social Sciences with the articles “Water Resources” and “Toxic Waste.” He graduated with a Ph.D. from UW—Madison with a dissertation on the Ecological Bases of Social Violence in Pakistan.


“I was first introduced to Wisconsin’s unique and storied conservation history while reading Leopold’s ‘Sand County Almanac’ in a Religion course at Middlebury College. I never imagined that 20 years later I would be working to preserve that legacy.” Dr. Phillips is a Professor of Chemistry, who teaches General, Physical, and Environmental Chemistry, and has established a vibrant externally funded undergraduate research program that has resulted in 13 peer-reviewed publications from UWEC (which have a total 25 student co-authors). Furthermore, he has spearheaded the development of all three environmental chemistry offerings at UWEC, and co-designed the Environment, Society, and Culture minor. He has given numerous presentations to the community of climate change, and has made several radio and TV appearances discuss climate change. Dr. Phillips earned an undergraduate degree form Middlebury College, and his Ph.D. in Physical Chemistry from the University of Minnesota. He subsequently took a NOAA postdoctoral fellowship in Climate and Global change, working both at the University of Colorado as well as the National Center for Atmospheric Research.

Garry Running
  • Ph.D., University of Wisconsin-Madison (Philosophy and Geography)
  • M.S., University of North Dakota (Geography)
  • B.S., Bemidji State University (Geology and Geography)
Research Interests
  •  Late Quaternary geomorphic history of the Lower Chippewa River valley
  • The SCAPE Project (Study of Cultural Adaptations within the Prairies Ecozone)
  • Civic Engagement
  • GEOG 104: The Physical Environment
  • GEOG 178: Conservation of the Environment
  • GEOG 350: Soils and the Environment
  • GEOG 401: Capstone
David Tschida portrait

  • Ph.D. University of Missouri (Communication)
  • M.A. University of Nebraska (Communication Studies)
  • B.A. St. Cloud State University (Communication Studies)

Teaching Interests
  • Environmental Communication
  • Communication and Advocacy
  • Rhetoric and the Public Sphere
  • Communication Literacy
Research Interests
  • Environmental Communication
  • Communication and Advocacy
  • Rhetoric and the Public Sphere
  • College of Arts and Sciences Curriculum Committee
  • Faculty Senator
  • Chair, Communication and Journalism Scholarship Committee
  • Affiliate faculty Member, Watershed Institute

I grew up in north central Minnesota. The home I grew up in was on the edge of a wildlife management area. From my childhood, I was exposed to experiences in nature. These experiences were part of the inspiration for my interest in environmental communication (the study of how we communicate about environmental issues, concerns, and needs in social movements, in the law, in the media, etc.). I enjoy camping, hiking, and fishing and exploring our national and state parks.


Evan R. Weiher, Professor “As a vegetation ecologist, I’m primarily interested in understanding the relative influences of multiple factors on plant community assembly and how this affects ecosystem functioning.” Dr. Weiher teaches Ecology and Evolution, Vegetation Ecology, and Limnology for the Department of Biology at UW-Eau Claire. His publications include “Advances, Challenges, and a Developing Synthesis of Ecological Community Assembly Theory” and “On the Status of Restoration Ecology: Obstacles and Opportunities.” Dr. Weiher also serves on the Putnam Park State Natural Area Commission committee. He earned his Masters in Civil and Environmental Engineering at the University of Washington and a Ph.D. in Biology: Plant Ecology from the Rensselaer Polytechnic Institute.

How to become an affiliate

Application to the Affiliate Program in the UW-Eau Claire Watershed Institute is open to all interested faculty and staff. Applications for affiliation will be reviewed by the WICES Program Coordinator in consultation with the WICES Steering Committee. Download the affiliate invitation form.

Contact Us
Name is required.
An email address is required.

Thanks for your interest in UW-Eau Claire. Let's get started!

Select a student category below for admission guidelines, important deadlines and instructions.

NOTE: To complete your application to UW-Eau Claire you will be taken off of this website to access the UW System online admission application.

If you want to apply for employment, please click here.