MEETING MINUTES

Meeting Location: UW-Eau Claire/OL1132

Date/Time: September 9, 2010/1:00 PM

Notes By: Raivo Balciunas

Attendees:
- WI Division of State Facilities (DSF)
 - Casey Coddington (teleconference)
 - Russ Van Gilder (teleconference)
- UW System Administration (UWSA)
 - Jeff Kosloske (teleconference)
- UW-Eau Claire
 - Rick Gonzales
 - Beth Hellwig
 - Katie Ritland-Couse
 - Troy Terhark
 - Jodi Thesing-Ritter
 - Becky Wurzer
- APEX Engineering
 - Rick Anderson
- Ayres Associates
 - Raivo Balciunas

Project No.: 08-1533.10 (DSF No. 08L1J)

Re: UW-Eau Claire

Children's Center

1. Rick Anderson presented an updated version of the Children’s Center HVAC System Evaluation (second revision), which evaluates six system options (see attached). After discussion, Casey Coddington requested the following additional information and actions before recommending a system:

- Maximum and minimum room temperatures allowed by WI Department of Children and Families (DCF), as a condition of facility licensing.
- Show calculations proving compliance with Executive Order 145 and how baseline was achieved.
- Calculate payback periods of the presented options, and show assumptions for energy cost, construction cost, and baseline cost.

 These should be submitted during the week of 9/13/10.

2. Rick Gonzales will consult with UWEC Facilities Management for their preferred option.
3. Project Schedule was reviewed with two alternate dates for BOR and SBC approval. The group consensus was to get on the November BOR and SBC meetings, if possible, as the alternate December meetings have sometimes been postponed. (See attached.)

4. Rick Gonzales stated the Campus Master Planning group had determined the new Children's Center building should have a flat roof, instead of the pitched roof currently under consideration. It would also require a brick exterior. These features would be more consistent with other campus buildings, as well as with the Water Street Development guidelines (although the building is not within the Water Street Historical District).

Ayres will revise building elevations accordingly, and submit these to the City of Eau Claire for the upcoming commission reviews.

cc: Russ Van Gilder
 Jeff Kosloske
 Kate Sullivan
 Jodi Thesing-Ritter
 Rick Gonzales
 Terry Classen
 Jon Hoffman
 Rick Anderson
 Angi Goodwin
 Phil Johnson
 Dennis Johnson
 Meg Overocker
 File 2.7
<table>
<thead>
<tr>
<th>Work on this site</th>
<th>System Comparison</th>
</tr>
</thead>
</table>
| 1. Construction cost | Cost of heating and ventilation:
| 2. Energy cost | 230kW (300 HP) for 3arem 30,000 ft.²
| 3. Operation | Total annual cost:
| 4. Building cost | $35,500
| 5. Additional system cost | $35,500
| 6. Additional energy cost | $35,500

Advantages
- First 10 Years
- Reduced operation and maintenance costs
- Lower energy consumption

Disadvantages
- Initial higher cost
- Maintenance requirements
- Potential for system degradation

Estimated Cost
- System Option 1: $29,650
- System Option 2: $29,400
- System Option 3: $28,900

System Option 4
- Cost of heating and ventilation:
 - $35,500

Conclusion
- The selection process aims to provide a relative cost comparison between community use systems which will provide appropriate operating conditions for the facility. Basic energy use characteristics were used to provide a relative cost comparison for each system.

Introduction and Scope
- UW-Eau Claire Children’s Center
<table>
<thead>
<tr>
<th>Option</th>
<th>Energy Efficient Boiler and High Efficiency Boilers</th>
<th>$374,000</th>
<th>$374,000</th>
<th>$374,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Low first cost</td>
<td>$58,525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>No chillers or steam shutdown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Add $750 per year for steam system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Additional heat replacement equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each boiler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each heat pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each heat pump with source heat pump</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option 4(A) Water

<table>
<thead>
<tr>
<th>Option</th>
<th>Energy Efficient Boiler and High Efficiency Boilers</th>
<th>$371,000</th>
<th>$371,000</th>
<th>$371,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Low first cost</td>
<td>$82,722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>No chillers or steam shutdown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Add $750 per year for steam system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Additional heat replacement equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each boiler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each heat pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each heat pump with source heat pump</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option 4(B) Water

<table>
<thead>
<tr>
<th>Option</th>
<th>Energy Efficient Boiler and High Efficiency Boilers</th>
<th>$378,000</th>
<th>$378,000</th>
<th>$378,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Low first cost</td>
<td>$99,510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>No chillers or steam shutdown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Add $750 per year for steam system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Additional heat replacement equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each boiler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each heat pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each heat pump with source heat pump</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option 4(C) Water

<table>
<thead>
<tr>
<th>Option</th>
<th>Energy Efficient Boiler and High Efficiency Boilers</th>
<th>$378,000</th>
<th>$378,000</th>
<th>$378,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Low first cost</td>
<td>$99,510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>No chillers or steam shutdown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Add $750 per year for steam system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Additional heat replacement equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each boiler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each heat pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5500 per year for each heat pump with source heat pump</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Does not include exhaust fan energy which is constant over all of the options.
and work. HHS building would increase the proposed cost by $249,000. Considerable installation space would also be necessary at the HHS second floor mechanical room.

The Children's Center would then be extended to the east of the Children's Center. The existing space at the extension well will be used to below grade and extended to the Children's Center. The location of the Children's Center would then be extended to the east. Through the space of the Children's Center and the extension the space will be the cooling pumps. The hot water source the cooling pumps require extension from the existing well at HHS to the mechanical room.

Locating the converter in the HHS building was considered. High pressure steam and condensate piping would require extension from the existing well at HHS to the mechanical room.

Notes:

- Room pump requires to Option (4). However, the number of hours that the system operates at the reduced efficiency condition is low.
- Room pumps (similar to Option (4) except that it does not require an evaporative type cooling tower for heat rejection. This Option would include a non-accumulator heat rejection.
REvised Project Schedule (Draft)

August 31, 2010

Review updated preliminary project design
September 1, 2010

Initial review meeting with City Planning Dept
September 7 – 10, 2010
(Up to 10/11/10 alternate)

Submit for City review
September 13, 2010
(10/18/2010 alternate)

Submit for DNR Chapter 30 permit review
September 14, 2010
(10/19/2010 alternate)

Waterways and Parks Commission review
September 22, 2010
(10/27/2010 alternate)

Submit 35% Design Report (Draft) to BOR
September 27, 2010
(10/28/2010 alternate)

Internal review of Draft EIA document
September 27, 2010
(10/28/2010 alternate)

Release Draft EIA/ public comment period
October 4 – 18, 2010
(11/4 to 11/18/2010 alt.)

City Plan Commission review
October 4, 2010
(11/15/2010 alternate)

Hold public hearing for DNR Chapter 30 permit (if needed)
October 18, 2010
(11/18/2010 alternate)

Hold public Draft EIA meeting
October 19, 2010
(11/19/2010 alternate)

Receive DSF 35% review comments – begin final design
October 25, 2010

BOR approval
November 4, 2010
(12/9 to 12/10/2010 alt.)

Receive DNR Chapter 30 permit response
November 8, 2010
(12/8/2010 alternate)

SBC approval
November 17, 2010
(12/15/2010 alternate)

Distribute final EIA
Late November, 2010
(December 2010 alternate)
Submit 100% Final Design documents for DSF review
December 20, 2010
(12/20/2011 alternate)

Receive DSF review comments
January 24, 2011
(2/24/2011 alternate)

Submit final bid documents to DSF
February 14, 2011
(3/14/2011 alternate)

Advertise for bids
February 28, 2011
(3/38/2011 alternate)

Bid opening
March 29, 2011
(4/29/2011 alternate)

Award construction contract
April 15, 2011
(5/15/2011 alternate)

Start construction
May, 2011
(June 2011 alternate)

Substantial completion
December 2011
(January 2012 alternate)

Project closeout
February 2012
(March 2012 alternate)